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COMBINED DISTRIBUTED LOADS ON RIGID-PLASTIC

CIRCULAR PLATES WITH LARGE DEFLECTIONS

NoORMAN JONES™

Division of Engineering, Brown University, Providence, Rhode Island

Abstract—A theoretical investigation into the influence of geometry changes on the behavior of a simply supported
circular rigid, perfectly plastic plate subjected to two independent distributed pressures is presented herein.
The results indicate, as might be anticipated, that when finite deflections are considered such plates could support
loads greater than the corresponding collapse pressures obtained recently by Fliigge and Gerdeen [4] and Hodge
and Sun [6]. The general procedure reported could be used to study the reserve strength of circular plates having
different boundary conditions and other kinds of external loads, and could be developed further in order to
examine the influence of geometry changes on other rigid—plastic structures subjected to time-dependent or
time-independent loads.
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NOTATION
plate thickness
aoH?/4
radial and circumferential bending moments per unit length
ooH

radial and circumferential membrane forces per unit length

transverse shear force per unit length of plate

outside radius of plate

deflection at center of circular plate

outer radius of surface area of plate over which pressure p acts as shown in Fig, 1
radii of various zones within the plate which are described by different parts of the yield surface
uniform distributed pressure per unit area of undeformed plate

dimensionless bending moments M,/M,, M,/M,

dimensionless membrane forces N,/Ng, No/No

uniform distributed pressure per unit area of undeformed plate indicated in Fig. 1
p/Po

6M/R?

uniform distributed pressure per unit area of undeformed plate indicated in Fig. 1
4/po

radial coordinate of plate

—kcos ¢

—ksin ¢

displacement in direction r of undeformed plate

transverse deflection perpendicular to undeformed plate

b/R

¢/R

a/R

radial and circumferential strains

p/R

circumferential coordinate lying in plate

radial and circumferential curvatures

radius of central zone in circular plate as defined in section 3

yield stress in simple tension

slope of the mid-plane of a plate measured in a plane which passes through r = 0and is perpendicular
to the plate surface

Wo/H

* Now at: School of Engineering, Massachusetts Institute of Technology, Boston, Massachusetts.
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1. INTRODUCTION

Drucker and Hopkins [1] studied the collapse of ideally-plastic circular plates subjected
to a combination of concentrated and distributed loads. This analysis, which was an
extension of Hopkins and Prager’s [2] earlier work, was formulated using equilibrium
equations derived for the undeformed configuration of the plate, and therefore neglected
the influence of membrane forces which arise during deformation. Onat and Haythorn-
thwaite [3] measured the load carrying capacity of initially flat circular mild steel plates and
observed that the bending only solution of Hopkins and Prager [2] underestimated con-
siderably the load which could be supported if deflections of the order of the plate thickness
or larger were permitted. In order to explain this strengthening effect, Onat and Haythorn-
thwaite incorporated both bending moments and membrane forces in an analysis based
on the upper bound theorem of plasticity.

Recently, Fliigge and Gerdeen [4] and Hodge and Sun [5] have studied the original
problem posed by Drucker and Hopkins [1] and determined the collapse loads for a
circular plate which was subjected to a combination of uniformly distributed loads p
and gq. Clearly there are an infinite number of combinations of p and g which will cause
collapse of the plate, and these can be shown to form a convex interaction curve in the
p-q plane. Combinations of p and ¢ which lie inside this curve are safe, while those lying
on the curve itself would indicate incipient collapse. Values of p and ¢ are not permitted
to fall outside the interaction curve for a rigid, perfectly plastic material. It may be shown
that there are seven different collapse mechanisms for the plate in the entire p—¢ plane.
Fliigge and Gerdeen [4] obtain some of these mechanisms by allowing portions of the
plate to remain rigid for which the corresponding generalized stresses therefore lie inside
the yield surface, while Hodge and Sun employ a mode vector as described in Ref. [6].

Now, if geometry changes of the plate during deformation are considered, then it is
clear that the plate behavior can be described by families of interaction curves in the p—g
plane, each family of which is related to a distinct spatial character of the loads, while
each curve within a family corresponds to a specific value of the deflection of the plate
measured at a convenient location. At a corner of the interaction curve, however, there
is the possibility that the deflection of the plate may not be unique, as observed by Fliigge
and Gerdeen [4] for the case when finite deformations are suppressed.

It is the object of this article to extend the recent work of Fliigge and Gerdeen [4]
and Hodge and Sun [5, 6] on the behavior of a rigid perfectly plastic circular plate, loaded
as indicated in Fig. 1, in order to study situations when finite deflections are permitted.

2. BASIC RELATIONS

The equations of equilibrium in the tangential and transverse directions of the deformed
element shown in Fig. 2 may be written in the form [7, 8]

r,+n,—Hy = —rkw'/Ng 1
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and
m. +2m, —my—4ngw'/H = rk/M . (2)
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FiG. 1. Simply supported circular plate loaded with two independent pressures p and g.
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FiG. 2. Element of a circular plate.
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If the radial displacement u = 0, then the appropriate strain and curvature rates are

g =wWw and g =0 3)

and

H

K, =W and K= W/r 4)

In order to achieve an analytical solution to the problem posed, the piecewise linear yield
surface proposed by Hodge [9] for a rigid, perfectly plastic material will be used in the
following work.

3. SINGLE DISTRIBUTED PRESSURE p >0 FOR 0 <r<a AND ¢g=0

In this section let us consider in some detail the particular case of a rigid, perfectly
plastic circular plate simply supported around its outer edge and loaded with a pressure
p distributed uniformly within a central circular zone of radius 4. The bending only solu-
tion for this problem may be obtained in a straightforward manner by allowing a plastic
hinge to form at the center of the plate. It appears reasonable for finite deflections, there-
fore, to attempt a solution which allows such a plastic hinge to grow into a central circular
zone, the radius p of which would increase with increase in deflection and load. Thus, the
plate can be analyzed conveniently in three separate regions: 0 <r < p, p <r < a and
a <r <R, viz

310<r=<p
Now, since the membrane forces and bending moments are axisymmetrically distri-
buted and p > 0, then

m=my=~1 and n.=n, =1 {5)

at the plate center.
If one considers the entire region 0 < r < p in this state, then it is necessary that

in order for the equilibrium equation (2) to be satisfied. Thus,

W= WO_E\T;’ (6)

where W, is the maximum deflection at r = 0.

This solution can be shown to satisfy the other equilibrium equation (1) provided
terms of order ¢, are neglected when compared with unity, an assumption which is con-
sistent with those implicit in the derivation of equations (1) and (2),

If all time rates of quantities are replaced by their derivatives with respect to W,
then using equations (3) and (4) and noting that dp/dW, > 0, it may be shown that §, > 0,
g9 = 0, K, < 0 and %, < 0 which are consistent with the normality requirements associ-
ated with the selected part of the yield surface {9].
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3.2 Displacement profile
If a linear displacement profile is selected for the region p < r < R, then

oo

since the deflection given by equation (7) must match that predicted by equation (6) at
r=p,andw=0atr =R

Furthermore, if w' is made continuous between the two regions at r = p, then it can
be shown that

_PeR_pp?
®7 No 2N,
which gives
w=]—l:]£0(R—r) forp<r<R (®)
and
A = 3pn(2—n), )
where
A= W,/H
P = p/po
Po = 6M,/R?
and
n = p/R.

33 p<r<a
If the part of the yield surface [9] described by the equations

—-1<m <0, me= —1, n=n,=1 (10)

r

is selected for this region, then equations (2) and (8) give

Z(rtm) = S (11)

the solution of which is

pp®> ppr pp®  pr

M= OM, 2M, 6My  6M,

2

1, (12)

where the constants of integration have been determined from the conditions m, = —1
and m, = 0 at r = p, which are demanded by the equilibrium requirements across the
circular boundary between the two zones.
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34a<r<R

If the yield condition (10) and the displacement profile (8) are substituted into equation
(2), then it may be shown that
g 2.0 PPT
5(" m} = -‘M—O,
from which

ppr pp> pa® pa’® pp

TIM, 6My 3Myr 2M,  2M,

2

m, = 1, (13)

where the constants of integration have been evaluated from the requirements that m,

and m, are continuous across the circular boundary between the two regions at r = a.
Finally, the requirement that m, = 0 at r = R gives

ple?(3~20—n(3-3n+9*)}-1=0 (14)

where ¢ = a/R.

Equation (14) reduces to

n=1-(1/p* (15)
when ¢ = 1, and
1

1 S — = B 16
p 2629 wheny =A =0, (16)
the value corresponding to the appropriate bending only solution of Refs. [4] and [5].

1t may be shown that m, > 0 at r = a provided

3 4+2e3-3ne2 > 0
which entails no restriction since 0 < n < ¢ < 1, while the more limiting expression

n+23-3p>0 (17

must be satisfied in order to ensure m, > 0 at r = R.

The solution to the posed problem given by equations (9) and (14) subject to the
restrictions (17) satisfies the equilibrium equations, boundary conditions, continuity
requirements and lies everywhere on the yield surface with associated strain and curvature
vectors consistent with normality. Thus the solution is exact for the yield surface selected
[9] within the framework of rigid, perfectly plastic theory which has been developed for
structures not undergoing geometry changes during deformation.

The results predicted by equations (9) and (15) are plotted in Fig. 3(a) and compared
with equation (5) of Ref. [3].

When equation (17) is not satisfied, then it is necessary to consider an additional outer
zone in order to ensure that m, > Oatr = R.Such an analysisis a straightforward extension
of the work in this section, but it is not presented here because the more general case of
two combined pressures p and g will be considered next.

4. COMBINED DISTRIBUTED PRESSURES p AND 4; p > 0 AND ¢ > 0

In this section we will consider the influence of geometry changes on the behavior of
a rigid, perfectly plastic circular plate simply supported around its outer edge and sub-
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FiG. 3. Comparison of results when ¢ = 0 with those of Rel. [3].

jected to the combination of uniformly distributed pressures shown in Fig. 1. It was
indicated in section 3 that an additional outer zone must be considered when one is
interested in studying deflections, the magnitude of which would cause the inequality (17)
to be violated. In fact it is necessary to consider seven different cases or modes of deforma-
tion in order to complete that portion of the convex interaction curve which lies in the
positive quadrant of the p—q plane. The basic ideas which have already been developed in
section 3 can be extended easily to the loading situation under review, viz.

41 Casel:p>gq

When the magnitude of g is small, one might expect this analysis to be somewhat
similar to that considered already in section 3. Indeed, if the same portion of the yield
surface is used, it can be shown that

A =3p—-gm2—n (18)
and
(F—-3(=3n+3n" —n*)+pe*3-2e)—g—1 =0, (19)
where
4 = q/po,
provided
N3 +2:3 -3 > 0 (20)
and
(B—n(n* —3)+2pe>—24 = 0. 2y

Equations (18) and (19) reduce to equations (9) and (14) when § = 0.

42 Case2:p>g

Case 1 no longer can be used for parameters which do not satisfy the inequality (21)
since the yield condition will be violated at the outer edge of the plate. Thus an additional
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outer zone must be considered, and for the purpose of this analysis the plate may be
divided conveniently into the three zones,

0<r<p inwhichm =my= —1, n,=ny=1,
p<r<b inwhich -1 <m <0 mg= —1, no=ng=1,
and
b <r < R throughout which m,—m; = 1, n,o=ny =1,

where it is assumed that 0 < p <a < b < R

If a procedure somewhat similar to that developed previously is followed, and a
logarithmic displacement profile is used in the outer region b < r < R, then it may be
shown that

A = Hp—m{2p(1 —log B)—n} 22)
n? 2pe?
(P—qin log ﬂ(-ﬁ—3ﬁ+3ﬁ log B) +3q(1 - B*+3B log ﬁ)+-ﬁ~ logg=0  (23)
and
(13——6)1?(3??—%2—33)*Qﬁ2+§82(3—%)—1 =0 (24)
where
B = b/R,
provided
7426335 > 0, (25)
(P—gmin*>—36%)+2pe* —23° = 0 (26)
and
(F—am(3p> —n* —6p* log B)+Gh(3 — p*)—2pe> = 0. @7

Equations (22)-(27) reduce to equations (18)21) when § = 1 for which equation (21)
is an equality.

43 Case3:p>gq
It may be shown that an extension of Case 2 to accommodate situations when
0<p<b<a<Rgives

A = Hp—gm{2p(1 —log p)—n}, (28)
3
)] {ﬂz(log B—3)+3nplog B(1 —log B)-% log B} +3pe*(1-2loge)—3g =0  (29)
and

3
P9 3n2—3n5~%+32)—1 =0, (30)
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provided
n*+2p%—-3n8% = 0, (31)
and
(P—3)(B*+3nB> —n* —6np” log f)+ 3G —pe*) = 0. (32)

44 Cased:p > q

The interaction curve for positive deflections and p > ¢ may be extended further by
allowing an outer annular portion of the plate to remain rigid. Thus, employing the piece-
wise linear yield surface [9], the plate can be divided into the three zones,

0 <r <p throughout whichm, = my = —~1, no=ng=1,
p<r<b describedby —1 <m, <0, me = —1, no=rng=1,
and
b<r<c inwhichm,—myg=1 and n,=ng=1.

The circular boundary of radius ¢ is at the point m, = 1, my = 0 and n, = ny = 1 of
the yield surface [9] and the portion ¢ < r < R of the plate remains rigid and is, therefore,
described by a combination of moments and forces which are allowed to lie within the
yield surface. Clearly the deflection of the plate in the region ¢ < r < R must be zero, but
the moments and forces cannot have unique values if the plate is made from a rigid, per-
fectly plastic material. However, one possible relationship between the forces and moments
is

OSm,.Sl, m0=0, n,=n9=l
in the zone ¢ < r < d, and
m,—my, =m,, n=n=1 and 0<m <1

throughout the region d < r < R.
Thus, solving the equilibrium equations and satisfying the boundary conditions and
continuity requirements when using the aforementioned generalized stress profiles gives

A = 2(p—qm(2B log /B +28—n), (33)
3
(ﬁ—é)(—3nﬂ+3n2—%+ﬁ2)—l =0 (34)
3
(P—q (3" —p>—3np +%— 6np log 3/B)—3g(6*> — &%) = 0, (35)
and
3
P—9) {3'13((108 5/¢e)* —(log &/)*) +log 8//3( —3Inp-p* +%) —%ﬂz}
36

—336*(1 -2 log 8/e)+3pe* —~1 =0 (0

where

0 =c¢/R,
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provided
n>+2p°~3np* 2 0 (37
n*+3e?f— B> —3np*(1 +2log ¢/p) = 0. (38)

The suggested profile in the outer rigid zone gives
m, = l—q—r22+3q52—@3—R forc<r<d (39)
R r
and

m, = —% %'j+%é+(3ﬁ82—m1)log(r/R) ford <r <R (40)

Continuity of m, at r = d gives one equation between the unknowns d and m,. Thus
the solution as in Ref. [4] is arbitrary to this degree.

45 Case5:q>p
One might expect that this case could be analyzed in a manner somewhat similar to
Case | withe = 1 when pis small. In fact using the following portions of the yield surface [9]

m=mg=n=n=1 forO<r<p,
and
O0<m <1, mg =1, n,=n=1 forp<r <R,

one can show that

A= —Hg—pPn2—n) (1)
and
@—PmB—=3n+n")+pe’(3-2¢)~g+1 =0 (42)
provided
n3+2e3-3ne2 > 0, 43)
and
@—pinln® —3)+24-2pe> > 0. (44)

|A] now represents the magnitude of the vertically upwards deflection at the center of the
plate.

46 Case6:p > q
Even though p > g we will now examine the situation when the applied loads cause
the plate to deflect upwards. Thus using the portion of the yield surface [9] represented
by the equations
m, =1, 0<m<, n=n=1 for0<r<b
and
0<m <1, me = 1, n=n=1 forb<r<R,
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it may be shown that

gp* = pe* (45)
and
~2A(1-B)—G(1 -3 +2*)+1 =0, {46)
provided
p—q < 1/3¢ (47
and
—A < q1-B3/(1+p) (48)

In common with the work in refs. [4, 5], it is necessary, in order to obtain a solution
for this case, to permit a discontinuity in dw/dr across the circular boundary between
the two regions at r = b.* However, if ¢ is given and one assigns particular values to p
and g, then f can be calculated from (45) and the corresponding value of A obtained
from (46).

4.7 Case7
If the inequality (47) is not satisfied, then it is necessary to allow an inner zone0 < r < p
of the plate to remain rigid while for
p<r<b, m, =1, my K my <1, He = Hg = 1,
and
0<m <1, mg = 1, n=n=1 forb<r<R
One admissible generalized stress profile in the rigid portion is
Mg = —My, -, < m, < Mz, Osngl, 0$m3$l
n=ng=1, for0 <r <aq,
and
m,—my = 1—my, n=n=1 forasr<p,

which gives, finally, equations (45), (46) and (48) with

B*—n* < 1/3g (49)
in order to maintain m; < 1.

The equations for the stress profile in the rigid region 0 < r < p of the plate are the
same as those used by Fliigge and Gerdeen [4] for the collapse mode III. These may be
shown to give finally one equation relating the parameters n and m, for continuity of
m, at r = a. Thus as indicated in reference [4] and earlier for Case 4 the solution is not

unique in the rigid zone.

5. DISCUSSION

The various equations presented in sections 3 and 4 reduce when A = 0 to the
corresponding bending only solution of Fliigge and Gerdeen [4], while the results for

* It might be noted here that dw/dr should be continuous across a travelling hinge when finite deflections are
permitted.
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Cases 1, 2, 3, 5 and 6 with A = 0 are identical to those in reference [5]. In Cases 4 and 7
outlined in sections 4.4 and 4.7 portions of the plate were allowed to remain rigid in a
manner similar to that developed by Fliigge and Gerdeen [4] while as mentioned previously,
Hodge and Sun [6] employed a mode vector approach in order to complete the inter-
action curve.

The predictions of the theoretical analysis outlined here are plotted in Figs. 3(a) and
3(b) for the particular cases in which ¢ = 1 and ¢ = 0-75 when g = 0 and compared with
the approximate upper bound solution of Onat and Haythornthwaite [3]. The latter [3]
disregarded any radial strain which might arise during deformation and allowed the plate
to slide over the supports.

It is clear from Fig. 4, which is plotted using the predictions of section 4, that the
interaction curve expands with increase in the allowable center deflection (A) of the plate.

20
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FiG. 4. The influence of finite-deflections on the interaction curve for a simply supported rigid—plastic
circular plate subjected to two independent pressures p and q.

This phenomenon, as discussed previously in section 1, is due to the action of membrane
forces which are introduced when changes in geometry occur. The plate remains rigid
for combinations of the loads p and g which lie within the convex interaction curve A = 0,
while combinations lying on the curve A = 0 indicate incipient collapse according to the
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bending only theory [4, 5]. It is relevant to remark here that the interaction curves for
A = A, where A; > 0 imply, of course, that upon removal of the loads which produced
a deflection A = A, the plate remains permanently deformed with a maximum deflection
of the magnitude A,. Upon reloading along the previous proportional loading path,
however, the plate remains rigid until subjected to the same combination of loads which
produced originally the deflection A,. It is important to emphasize here that the curves
A > 0 should be thought of as initial proportional loading curves only because reloading
introduces complications for any other than the simple case just discussed.

Now all the various solutions presented here satisfy the equilibrium equations, boundary
conditions, continuity requirements and have generalized stresses which lie everywhere
on or within the yield surface, with associated strain-rate and curvature-rate vectors
consistent with the requirements of normality, Thus the solutions are exact for the yield
surface selected [9] within the framework of the rigid, perfectly plastic theory which has
been developed for structures not undergoing geometry changes during deformation.
However, the same comments noted in the conclusion of Onat and Haythornthwaite [3]
concerning the fact that the assumed shape of the deflected plate may not coincide with
the most favorable profile developed by an actual plate apply equally here. Furthermore, in
order to make the problem tractable, the piecewise linear four dimensional yield surface of
Hodge [9] was used rather than the exact one of Onat and Prager [10]. This approximate
yield surface circumscribes the exact one, while another 0618 times as large would inscribe
it. It is assumed that the true behavior lies somewhere between the solutions obtained
from these two yield surfaces. Intuitively, one might expect this to be reasonable, but there
is no guarantee that the displacement at a point on a structure does lie between the results
obtained from these two yield surfaces because a linearization of the yield surface in-
variably restricts response due to the normality requirements. Naturally, these latter
comments apply equally well to all analyses using piecewise linear approximations of the
exact yield surface.

It was assumed when deriving the sections of the interaction curve described by Cases 4
and 7 that certain portions of the plate remained rigid and were therefore described by
combinations of generalized stresses which lay within the yield surface. Clearly, when a
plate is made from a rigid, perfectly plastic material, the generalized stresses which lie
within the rigid zones do not have unique values. It may be necessary for certain para-
meters to use different generalized stress profiles within the rigid zones to those suggested
in sections 4.4 and 4.7. Nevertheless the equations for the interaction curves would remain
unchanged.

The importance of material strain-hardening, for the cases in which no hinges form,
could be examined in a manner similar to that developed in ref. [11]. However, the
influence of this additional parameter might be expected to be small because of the small
strain assumptions incorporated in the present theory.

6. CONCLUSIONS

A theoretical study of the behavior of a simply supported rigid, perfectly plastic circular
plate subjected to two independent distributed pressures is presented here for the case
when geometry changes are permitted. The results indicate clearly that the plate could
support pressures greater than those obtained recently by Fliigge and Gerdeen [4] and
Hodge and Sun {5, 6] when the influence of geometry changes is disregarded.
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It should prove straightforward to extend the work reported here in order to examine
the reserve strength of piates with different boundary conditions and subjected to other
kinds of external loads. In fact this general procedure has been used already to study the
dynamic behavior of rigid—plastic circular plates [8] and could be developed further in
order to examine the influence of finite-deflections on the behavior of other rigid-plastic
structures subjected to time-dependent or time-independent loads.
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ABerpart—TlIpHBOOMTCA TEOPETHYECKOE WCCAENOBAHME BIIMSHUS W3IMEHEHHH TEOMETDHHM HA MNOBEHEHHE
cBOGONHO OMEPTHIX, KPYL/bIX, KECTKO MIEANLHO TUIACTHYECKHX TUIACTHHOK, TIOABEPXKEHHBIX NBYM He3ad-
MCHMO PACTIPENeneHHbIM JaBaeHUAM. Pe3y/IbTaThl YKa3biBalOT, KAK MOXHO ObIIO 0XUAATH, YTO NIPH y4eTe
KOHEYHBIX NPOrHOOB TaKHME TMIACTHHKM MOIYT NMEPEHOCHTHL GOMNbILYIO HATPY3KY YeM COOTBETCTBYIOLUME
gasfieHus NPK pa3pyiieHuy, mosedeHHse veaasuno Gmorrem u Ixepaunom [4] u Xomxem u Canom [6].
Vxkazauubiit obuwmit criocof MOXHO HMCHONB30BATE UIA UCCHCAOBAHUA 32MHCA HPOYHOCTH KPYIAbIX Tina-
CTHHOK, OBNAnyIOMMX PAIHBEIMHA TPAHMYHBIMHE YCTOBHAMH W APYIUMHM POJAMH BHelHBIX Harpysox. [lanee
MOXKHO 3TOT CHOCO0 Pa3BUTHL IS HCIBLITAHUA BIUSHUS M3IMEHEHMH FeOMETPHM APYTHX XECTKO-ILIACTHUE
CKMX KOHCTPYKUM, IOABEPKEHHBIX HATDY3KE, 3aBUCAUICH U He3aBuCALIeH OT BPEMeEHH.



